Topic: Conditional Probability \& the Rules of Probability

Key Learning(s): The students and conditional probability and Unit Essential Question(s): How and conditional probability and u	Il understand independence e them to interpret data. you understand independence them to interpret data?	OptionalConstructional Tools:CCSS.Math.Content.HSS-CP.A.4 Construct and interprettwo-way frequency tables ofdata when two categories areassociated with each objectbeing classified. Use the two-way table as a sample spaceto decide if events areindependent and toapproximate conditionalprobabilities. For example,collect data from a randomsample of students in yourschool on their favorite subjectamong math, science, andEnglish. Estimate theprobability that a randomlyselected student from yourschool will favor science giventhat the student is in tenthgrade. Do the same for othersubjects and compare theresults.associated with eachobject beingclassified?drequency when tables ofand interpret two-wayvocabulary: frequency table,conditional, union, intersection,conditional, probability,replacement
Concept: CCSS.Math.Content.HSSCP.A. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	Concept: CCSS.Math.Content.HSSCP.A. 2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	
Lesson Essential Questions: 1. How do you describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not")?	Lesson Essential Questions: How do you understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent? 1.	
Vocabulary: subset, sample space, complement, union, intersection, conditional, probability, replacement	Vocabulary: independent, dependent, compound event	

Concept: CCSS.Math.Content.HSS- CP.A.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.	Concept:	
Lesson Essential Questions: How do you recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations?	Lesson Essential Questions: 1.	Lesson Essential Questions:
Locabulary: conditional probability, independent, dependent	Vocabulary:	

Attached Document(s):

Additional Info:

A2.2.3.2.1, A2.2.3.2.2, A2.2.3.2.3

Topic:

Key Learning(s): The students will use the rules of probability to compute probabilities of compound events.

Concept: CCSS.Math.Content.HSSCP.B. 6 Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.	Concept: CCSS.Math.Content.HSSCP.B. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)$ $-P(A$ and $B)$, and interpret the answer in terms of the model.	Concept: CCSS.Math.Content.HSSCP.B. 8 (+) Apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and B$)$ $=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.
Lesson Essential Questions: 1. How do you find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model?	Lesson Essential Questions: 1. How do you apply the Addition Rule, P (A or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model?	Lesson Essential Questions: 1. How do you apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and $B)=P(A) P(B \mid A)=$ $P(B) P(A \mid B)$, and interpret the answer in terms of the model?
Vocabulary: outcomes, probability	Vocabulary: inclusive, addition rule, mutually exclusive, disjoint, rule of complementary events	Vocabulary: replacement, complement, intuitive mult. rule

Concept:	Concept:	Concept:
CCSS.Math.Content.HSS- CP.B.9 (+) Use permutations and combinations to compute probabilities of compound events and solve problems.		Lesson Essential Questions:
Lesson Essential Questions: 1.How do you use permutations and combinations to compute probabilities of compound events and solve problems? Lesson Essential Questions: 1. Vocabulary: compound events, permutations, combinations Vocabulary:	Vocabulary:	

Additional Info:

A1.2.3.3.1, A2.2.3.2.1, A2.2.3.2.2, A2.2.3.2.3

Attached Document(s):

Probability - Interpreting Categorical and Qualitative Data

| Key Learning(s): The students will summarize, represent, and |
| :--- | :--- | :--- | :--- |
| interpret data on a single count or measurement variable. |

Concept:	Concept:	Concept:
CCSS.Math.Content.HSS- ID.A.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.		
Lesson Essential Questions: How do you use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve?		
Vocabulary: normal curve, bell curve, normal distribution, mean, standard deviation, z score	Vocabulary:	

Attached Document(s):

Additional Info:

A1.2.3.1.1, A1.2.3.2.1, A1.2.3.2.2, A1.2.3.2.3

Topic:

Key Learning(s): The students will summarize, represent, and interpret data on two categorical and quantitative variables.

Concept: CCSS.Math.Content.HSSID.B. 5 Summarize categorical data for two categories in twoway frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	Concept: - CCSS.Math.Content.HSSID.B. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. CCSS.Math.Content.HSSID.B.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. - CCSS.Math.Content.HSSID.B.6b Informally assess the fit of a function by plotting and analyzing residuals. - CCSS.Math.Content.HSSID.B.6c Fit a linear function for a scatter plot that suggests a linear association.	Concept:
Lesson Essential Questions: 1. How do you summarize categorical data for two categories in twoway frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies)?	Lesson Essential Questions: 1. How do you represent data on two quantitative variables on a scatter plot, and describe how the variables are related?	Lesson Essential Questions: 1.
Vocabulary:relative frequency, conditional relative frequency, cumulative frequency	Vocabulary: scatter plot, best fit line, residuels, linear, quadratic, exponential	Vocabulary:

Concept:	Concept:	Concept:
Lesson Essential Questions: 1.	Lesson Essential Questions: 1.	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:
Additional Info:		
A1.2.1.1.1, A1.2.1.1.2, A1.2.1.1.3, A1.2.1.1.3, A1.2.1.2.1, A1.2.1.2.2, A1.2.2.2.1, A2.2.1.1.1, A2.2.1.1.2, A2.2.1.1.3,		
A2.2.1.1.4, A2.2.3.1.1, A2.2.3.1.2		

Topic:

Key Learning(s): The students will
Interpret linear models .

Unit Essential Question(s):

How do you interpret linear models?

Concept:	Concept:	Concept:
CCSS.Math.Content.HSS-		
ID.C. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	CCSS.Math.Content.HSS- ID.C.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	CCSS.Math.Content.HSS- ID.C.9 Distinguish between correlation and causation.
Lesson Essential Questions: 1. How do you interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data?	Lesson Essential Questions: technology) and interpret the correlation coefficient of a linear fit?	Lesson Essential Questions: 1. How do you distinguish between correlation and causation/
Vocabulary: constant, slope, intercept	Vocabulary: correlation, coefficient	Vocabulary: correlation, causation

Attached Document(s):

Additional Info:

A1.2.1.2.1, A1.2.1.2.2, A1.2.2.2.1, A2.2.1.1.1, A2.2.1.1.2, A2.2.1.1.3, A2.2.1.1.4, A2.2.2.2.1

Topic: Making Inferences \& Justifying Conclusions

Key Learning(s): The students will understand and evaluate
random processes underlying statistical experiments.

Unit Essential Question(s): How do you understand and evaluate random processes underlying statistical experiments?

Concept:	Concept:	Concept:
CCSS.Math.Content.HSS- IC.A.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	CCSS.Math.Content.HSS- IC.A.2 Decide if a specified model is consistent with results from a given data- generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?	
Lesson Essential Questions: How do you understand making inferences about population parameters based on a random sample from that population?	Lesson Essential Questions: How do you decide if a specified model is consistent with results from a given data- generating process, e.g., using simulation? For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?	
locabulary: Paramers, inferences, random sample	Vocabulary: simulation	

Concept:	Concept:	Concept:
Lesson Essential Questions: 1.	Lesson Essential Questions: 1.	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

Additional Info:

A.1.2.3.3.1, A2.2.3.2.1, A2.2.3.2.2, A2.2.3.2.3

Topic:

Key Learning(s): The students will make inferences and justify conclusions from sample surveys, experiments, and observational studies .
 justify conclusions from sample surveys, experiments, and nhonumatiomol ctiliac?

Concept:	Concept:	Concept:
CCSS.Math.Content.HSSIC.B. 3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	CCSS.Math.Content.HSSIC.B. 4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	CCSS.Math.Content.HSSIC.B. 5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
Lesson Essential Questions: 1. How do you recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each?	Lesson Essential Questions: 1. How do you use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling?	Lesson Essential Questions: 1. How do you use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant?
Vocabulary: survey, experiments, procedures, observational studies	Vocabulary: simulation, mean, median, mode, midrange, standard deviation	Vocabulary: parameter, placebo, treatment group

Attached Document(s):

Additional Info:

Topic:

Key Learning(s): The students will make inferences and justify conclusions from sample surveys, experiments, and observational studies.

Concept: CCSS.Math.Content.HSS- IC.B.6 Evaluate reports based on data.	Concept:	Concept:
Lesson Essential Questions: 1. How do you evaluate reports based on data?	Lesson Essential Questions: 1.	Lesson Essential Questions: 1.
Vocabulary: report, data, significance	Vocabulary:	Vocabulary:

Attached Document(s):

Additional Info:

Topic: Using Probability to Make Decisions

Concept:	Concept:	Concept:
CCSS.Math.Content.HSS- MD.A.4 (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?		
Lesson Essential Questions: 1. How do you develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value?		
Vocabulary: random, independent, uniform distribution	Lesson Essential Questions:	

Attached Document(s):

Additional Info:

Topic:

Key Learning(s): The students will use probability to evaluate outcomes of decisions.

Concept:	Concept:	Concept:
CCSS.Math.Content.HSSMD.B. 5 (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values. CCSS.Math.Content.HSSMD.B.5a Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant. CCSS.Math.Content.HSSMD.B.5b Evaluate and compare strategies on the basis of expected values. For example, compare a highdeductible versus a lowdeductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.	CCSS.Math.Content.HSSMD.B. 6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).	CCSS.Math.Content.HSSMD.B. 7 (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).
Lesson Essential Questions: 1. How do you weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values?	Lesson Essential Questions: 1. How do you use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator)?	Lesson Essential Questions: 1. How do you analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game)?
Vocabulary: payoff value, expected value	Vocabulary: fair decisions, random number generator	Vocabulary:

