# Folder: Science

Group/District: PENNSYLVANIA



Days: 8

#### Topic: Astronomy (Universal Gravitation)

Subject(s): Science

Grade(s): 12th Key Learning: Newton's Laws of Universal Gravitation can be used to explain the movement of the solar system. Unit Essential Question(s): Why do we believe the Earth circles the Sun when visually it appears to be the other way around? Concept: Concept: Concept: Kepler's Laws of Planetary Motion Newton's Laws of Universal Applying Laws of Gravitation S11.D.3.1.1 Gravitation S11.D.3.1.1 S11.D.3.1.1 Develop and used the Theory as it applies to any two objects. Review history of early beliefs of the solar system and how modern concepts were arrived at. May venture into dark matter to show not all is confidently understood. Lesson Essential Question(s): Lesson Essential Question(s): Lesson Essential Question(s): What laws did Kepler believe governed the How can we apply math to the concept of What laws did Kepler propose governed the universe? (A) movement of the universe? (A) universal gravitation? (A) Vocabulary: Vocabulary: Vocabulary: Kepler's Laws of Planetary Motion Gravitational Force, Law of Universal Inertial Mass, Gravitational Mass Gravitation

Additional Information: Attached Document(s):

Vocab Report for Topic: Astronomy (Universal Gravitation) Subject(s): Science

Days: 8 Grade(s): 12th

# Concept:

Kepler's Laws of Planetary Motion

Kepler's Laws of Planetary Motion -

# Concept:

Newton's Laws of Universal Gravitation

Gravitational Force -Law of Universal Gravitation -

# Concept: Applying Laws of Gravitation

Inertial Mass -Gravitational Mass -

 $\wedge$ 

Days: 15

Grade(s): 12th

# Topic: Energy/Work/Simple Machines Subject(s): Science Key Learning: Energy is not always conserved and machines do not produce more energy than is required. Unit Essential Question(s): If I exert energy, apply force, am I really doing any work?

| Concept:                                                             | Concept:                                                                                           | Concept:                                                                                                                            |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Energy                                                               | Work                                                                                               | Machines                                                                                                                            |
| What types of energy are there and when is energy conserved?         | Work is the change in (mechanical) energy                                                          | Machines only transfer energy - do not create it - and<br>Efficiencies are always less than 100%                                    |
| Lesson Essential Question(s):<br>When is Energy conserved? (A)       | Lesson Essential Question(s):<br>I pushed on the wall - it didn't move - did I do<br>any work? (A) | Lesson Essential Question(s):<br>Do machines do work? (A)                                                                           |
|                                                                      |                                                                                                    |                                                                                                                                     |
| Vocabulary:<br>Energy, Kinetic Energy, Work-Energy<br>Theorem, Joule | Vocabulary:<br>Power, Watt                                                                         | Vocabulary:<br>Effort Force, Resistance Force, Mechanical<br>Advantage, Ideal Mechanical Advantage,<br>Efficiency, Compound Machine |

| Concept:<br>Kinetic Energy                                                | Concept:<br>Potential Energy                                                                | Concept:<br>Conservation of Energy                                                                         |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                                           |                                                                                             |                                                                                                            |
| Lesson Essential Question(s):<br>What are examples of kinetic energy? (A) | Lesson Essential Question(s):<br>What are examples of potential energy (A)                  | Lesson Essential Question(s):<br>How do we solve problems using the Law of<br>Conservation of Energy? (A)  |
|                                                                           |                                                                                             |                                                                                                            |
| Vocabulary:<br>Kinetic Energy                                             | Vocabulary:<br>Gravitational Potential Energy, Reference<br>Level, Elastic Potential Energy | Vocabulary:<br>Law of Conservation of Energy, Mechanical<br>Energy, Elastic Collision, Inelastic Collision |

Subject(s): Science

Attached Document(s):

Days: 15 Grade(s): 12th Vocab Report for Topic: Energy/Work/Simple Machines Subject(s): Science

Days: 15 Grade(s): 12th

## Concept:

Energy

Energy -Kinetic Energy -Work-Energy Theorem -Joule -

## Concept:

Work

Power -Watt -

## Concept:

Machines

Effort Force -Resistance Force -Mechanical Advantage -Ideal Mechanical Advantage -Efficiency -Compound Machine -

# Concept: Kinetic Energy

Kinetic Energy -

# **Concept: Potential Energy**

Gravitational Potential Energy -Reference Level -Elastic Potential Energy -

# Concept: Conservation of Energy

Law of Conservation of Energy -Mechanical Energy -Elastic Collision -Inelastic Collision -

# Topic: Force and Motion in Two Dimensions

Subject(s): Science

Days: 10 Grade(s): 11th, 12th



Attached Document(s):

Vocab Report for Topic: Force and Motion in Two Dimensions Subject(s): Science

Days: 10 Grade(s): 11th, 12th

# Concept:

Equilibrium

Equilabrant -

# Concept:

Motion on an Inclined Plane

Inclined Plane -

#### Concept:

**Projectile Motion** 

Maximum Height -Range -Flight Time -

#### **Concept: Circular Motion**

Uniform Circular Motion -Centripetal Acceleration -Centripetal Force -Rigid Rotating Object -Lever Arm -Torque -

#### Topic: Force

Subject(s): Science

Days: 14 Grade(s): 11th, 12th



| Concept:<br>Friction<br>S11.C.3.1.2, S11.C.3.1.3                                   | Concept:<br>Simple Harmonic Motion                                                     | Concept:<br>Newton's Third Law<br>S11.C.3.1.2, S11.C.3.1.3                                                    |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Lesson Essential Question(s):<br>What factors influence friction? (A)              | Lesson Essential Question(s):<br>What factors influence simple harmonic<br>motion? (A) | Lesson Essential Question(s):<br>What does Newton's Third Law of Motion tell<br>us about how things move? (A) |
|                                                                                    |                                                                                        |                                                                                                               |
| Vocabulary:<br>Static Friction Force, Kinetic Friction Force,<br>Terminal Velocity | Vocabulary:<br>Simple Harmonic Motion, Period, Amplitude,<br>Mechanical Resonance      | Vocabulary:<br>Interaction Pair, Newton's Third Law                                                           |

#### Topic: Force

Subject(s): Science

Days: 14 Grade(s): 11th, 12th



Additional Information:

Attached Document(s):

Vocab Report for Topic: Force Subject(s): Science

Days: 14 Grade(s): 11th, 12th

#### Concept:

Newton's Second Law of Motion

Contact Force -Long-Range Force -Force of Gravity -Agent -Free-Body Diagram -Net Force -Newton's Second Force -

#### Concept:

Newton's First Law of Motion

Newton's First Law -Inertia -Equilibrium -

#### Concept: Using Newton's Laws

Apparent Weight -Weightlessness -

#### **Concept: Friction**

Static Friction Force -Kinetic Friction Force -Terminal Velocity -

#### **Concept: Simple Harmonic Motion**

Simple Harmonic Motion -Period -Amplitude -Mechanical Resonance -

# Concept: Newton's Third Law

Interaction Pair -Newton's Third Law -

Concept: Ropes and Springs

Vocab Report for Topic: Force Subject(s): Science

Tension -

Days: 14 Grade(s): 11th, 12th

# Curriculum: COLUMBIA BOROUGH SD Curriculum Course: Science - Physics



#### Topic: Math for Physics

Subject(s): Science

Days: 12 Grade(s): 12th



Additional Information:
Attached Document(s):

Vocab Report for Topic: Math for Physics Subject(s): Science Days: 12 Grade(s): 12th

## Concept:

Algebra Review- Exponents, Scientific, Metric System, SI Notation, Notation, Polynomial Equations

Exponents -Scientific notation -Decimal Notation -Metric System -SI -Base Units -Meter -Second -Kilogram -

Derived Units -

#### Concept:

Mathematical Uncertainties

Precision -Accuracy -Parallax -Significant Digits -

#### Concept:

**Graphing Data** 

Linear Relationship -Slope y-intercept -Quadratic Relationship -Inverse Relationship -

#### **Concept: Properties of Vectors**

Graphical Representation -Algebraic Representation -Resultant Vector -

# **Concept: Components of Vectors**

Vector Resolution -Components -

| Copic: Momentum<br>Subject(s): Science                                                    |                                                                                                                        | Days:<br>Grade(s): 12                                                                                                                                             |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Key Learning: Momentum is conserved in                                                    | all situations and applications.                                                                                       | 2                                                                                                                                                                 |
| Unit Essential Question                                                                   | <sup>s):</sup> How do air bags help reduce in<br>lives in a car crash?                                                 | njuries and save                                                                                                                                                  |
|                                                                                           |                                                                                                                        |                                                                                                                                                                   |
| Concept:                                                                                  | Concept:                                                                                                               | Concept:                                                                                                                                                          |
| Impulse - Momentum Theorem                                                                | Momentum Conservation                                                                                                  | Momentum in Two Dimensional                                                                                                                                       |
| S11.C.3.1.1, S11.C.3.1.2                                                                  | <u>S11.C.3.1.1, S11.C.3.1.2</u>                                                                                        | Collisions                                                                                                                                                        |
| Develop the Theorem mathematically and graphically                                        | Show that Momentum is conserved in 1-dimensional                                                                       | <u>S11.C.3.1.1</u> , <u>S11.C.3.1.2</u>                                                                                                                           |
|                                                                                           | elastic collisions                                                                                                     | Show conservation of Momentum when an elastic collision between two billiard balls is not 'dead on'                                                               |
|                                                                                           |                                                                                                                        |                                                                                                                                                                   |
| Lesson Essential Question(s):<br>What does Newton's 'equal and opposite' law<br>mean? (A) | Lesson Essential Question(s):<br>If a billiard ball strikes a second ball straight on,<br>what happens? (A)            | Lesson Essential Question(s):<br>How can momentum be conserved when a ball<br>hits another such that they both continue to<br>travel in different directions? (A) |
|                                                                                           |                                                                                                                        |                                                                                                                                                                   |
| Vocabulary:<br>Momentum, Impulse, Impulse-Momentum<br>Theorem, Angular Momentum           | Vocabulary:<br>Closed System, Internal Forces, External<br>Forces, Isolated System, Law of Conservation<br>of Momentum | Vocabulary:<br>Net Momentum                                                                                                                                       |

| Additional Inform<br>See attachments I |         |
|----------------------------------------|---------|
| Attached Docume                        | ent(s): |

Vocab Report for Topic: Momentum Subject(s): Science Days: 8 Grade(s): 12th

#### Concept:

Impulse - Momentum Theorem

Momentum -Impulse -Impulse-Momentum Theorem -Angular Momentum -

# Concept:

Momentum Conservation

Closed System -Internal Forces -External Forces -Isolated System -Law of Conservation of Momentum -

#### Concept:

Momentum in Two Dimensional Collisions

Net Momentum -

# Curriculum: COLUMBIA BOROUGH SD Curriculum Course: Science - Physics

**Topic: Motion Days:** 18 Subject(s): Science Grade(s): 12th Key Learning: The motion of an object can be described both graphically and mathematically. Unit Essential Question(s): How do I describe the motion of an object? Concept: Concept: Concept: **Motion Graphically** Acceleration Velocity S11.C.3.1.3, S11.C.3.1.2 S11.C.3.1.3, S11.C.3.1.2 S11.C.3.1.3, S11.C.3.1.2 Diffferentiate between distance and displacement and how displacement is graphically represented. understand velocity (vector) vs Speed (scalar) and Just a velocity is the rate change of displacement (vs (Instant vs Average) Velocity time); Acceleration is the rate change of Velocity (vs time) Lesson Essential Question(s): How many ways can motion in a straight line be Lesson Essential Question(s): What does it mean to be motionless? (A) Lesson Essential Question(s): Can velocity, displacement, and acceleration be represented? (Å) used to define an object's motion completely? (A)

| Vocabulary:<br>Motion Diagram, Operational Diagram, Particle<br>Model, Coordinate System, Origin, Position<br>Vector, Scalar Quantity, Vector Quantity,<br>Displacement, Time Interval, Distance | Vocabulary:<br>Average Velocity, Average Speed,<br>Instantaneous Velocity | Vocabulary:<br>Average Acceleration |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------|

| Concept:<br>Graphing Motion and Velocity<br>S11.C.3.1.3, S11.C.3.1.2                       | Concept:<br>Solving Motion Problems                                                                                 | Concept:<br>Free Fall Motion                                                                              |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Lesson Essential Question(s):<br>How do I represent velocity and motion on a<br>graph? (A) | Lesson Essential Question(s):<br>How do I mathematically solve problems<br>involving velocity and acceleration? (A) | Lesson Essential Question(s):<br>How is the motion of an object different when it<br>is in free fall? (A) |
| Vocabulary:<br>Uniform Motion                                                              | Vocabulary:<br>Constant Acceleration, Instantaneous<br>Acceleration                                                 | Vocabulary:<br>Acceleration Due to Gravity                                                                |

Topic: Motion Subject(s): Science

Days: 18 Grade(s): 12th

Additional Information:

Attached Document(s):

Vocab Report for Topic: Motion Subject(s): Science

Days: 18 Grade(s): 12th

#### **Concept: Motion Graphically**

Motion Diagram -Operational Diagram -Particle Model -Coordinate System -Origin -Position Vector -Scalar Quantity -Vector Quantity -Displacement -Time Interval -Distance -

#### Concept:

Velocity

Average Velocity -Average Speed -Instantaneous Velocity -

#### Concept:

Acceleration

Average Acceleration -

#### Concept: Graphing Motion and Velocity

Uniform Motion -

# **Concept: Solving Motion Problems**

Constant Acceleration -Instantaneous Acceleration -

# **Concept: Free Fall Motion**

Acceleration Due to Gravity -

# Curriculum: COLUMBIA BOROUGH SD Curriculum Course: Science - Physics

Topic: Waves: Light & Sound

Subject(s): Science

Days: 15 Grade(s): 12th



# Topic: Waves: Light & Sound

Subject(s): Science

Days: 15 Grade(s): 12th

| Concept:<br>Mirrors                                                                                                                                  | Concept:<br>Lenses                                                                                                                                                              | Concept:<br>Gratings                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>S11.C.2.1.1</u>                                                                                                                                   | <u>S11.C2.1.1</u>                                                                                                                                                               | S11.C.2.1.1<br>Light diffracts when it passes through narrow slitssplitting<br>the light into distint patterns of positive and negative<br>interference. |
| Lesson Essential Question(s):<br>How does light behave at boundaries? (A)<br>How does the reflected beam compare with the<br>initial light wave? (A) | Lesson Essential Question(s):<br>What are the properties of images formed by<br>concave and convex lense? (A)<br>How do images form when light is passed<br>through lenses? (A) | Lesson Essential Question(s):<br>How is a grating different than a prism? (A)                                                                            |
| Vocabulary:<br>Normal, Image, Convex / Concave,<br>Magnification, Virtual, medium, reflection,<br>refraction, diffraction, polarization              | Vocabulary:<br>Magnification, convex, concave, real/virtual<br>image, focus, focal point, radius of curvature,<br>Total Internal Reflection / Critical Angle                    | Vocabulary:<br>Diffraction, Young's interference Experiment<br>(Interferometer)                                                                          |

Additional Information:

 Attached Document(s):

Vocab Report for Topic: Waves: Light & Sound Subject(s): Science

Days: 15 Grade(s): 12th

#### **Concept: Wave Mechanics**

wavelength frequency period amplitude trough peak constructive/destructive interference node antinode standing wave resonance superposition boundary medium reflection refraction -

## Concept: Sound

| Decibel (dB) -               |
|------------------------------|
| pitch -                      |
| echo -                       |
| doppler -                    |
| harmonics -                  |
| open/closed pipe resonator - |
| octave -                     |

#### **Concept: Nature of Light**

wavelength frequency amplitude -Transverse / longitudinal -Hertz / Frequency -Boundary primary and secondary colors -

## Concept:

Mirrors

Normal -Image -Convex / Concave -Magnification -Virtual - Vocab Report for Topic: Waves: Light & Sound Subject(s): Science

medium reflection refraction diffraction polarization -

# Concept:

Lenses

Magnification convex concave real/virtual image focus focal point radius of curvature -Total Internal Reflection / Critical Angle -

# Concept:

Gratings

Diffraction -Young's interference Experiment (Interferometer) - Days: 15 Grade(s): 12th