Folder: Science

Group/District: PENNSYLVANIA

Course Map Timeline
 Science - Physics

Topic: Astronomy (Universal Gravitation)
Days: 8
Subject(s): Science

Additional Information:

Attached Document(s):

Concept:

Kepler's Laws of Planetary Motion
Kepler's Laws of Planetary Motion -

Concept:

Newton's Laws of Universal Gravitation

Gravitational Force -
Law of Universal Gravitation -

Concept: Applying Laws of Gravitation

Inertial Mass -
Gravitational Mass -

Topic: Energy/Work/Simple Machines

Days: 15
Subject(s): Science
Key Learning: Energy is not always conserved and machines do not produce more energy than is required.

Topic: Energy/Work/Simple Machines
\square

Vocab Report for Topic: Energy/Work/Simple Machines

Concept:

Energy
Energy -
Kinetic Energy -Work-Energy Theorem Joule -

Concept:

Work
Power -
Watt -

Concept:

Machines
Effort Force -
Resistance Force -
Mechanical Advantage -
Ideal Mechanical Advantage -
Efficiency -
Compound Machine -

Concept: Kinetic Energy

Kinetic Energy -

Concept: Potential Energy

Gravitational Potential Energy -
Reference Level -
Elastic Potential Energy -

Concept: Conservation of Energy

Law of Conservation of Energy -
Mechanical Energy -
Elastic Collision -
Inelastic Collision -

Topic: Force and Motion in Two Dimensions
Days: 10
Subject(s): Science

Key Learning: The movement of everyday objects can be explained in terms of Newton's Laws.

Vocabulary:
Uniform Circular Motion, Centripetal
Acceleration, Centripetal Force, Rigid Rotating
Object, Lever Arm, Torque

Additional Information:

Attached Document(s):

Concept:

Equilibrium
Equilabrant -

Concept:

Motion on an Inclined Plane
Inclined Plane -

Concept:

Projectile Motion
Maximum Height -
Range-
Flight Time -

Concept: Circular Motion

Uniform Circular Motion -
Centripetal Acceleration -
Centripetal Force -
Rigid Rotating Object -
Lever Arm -
Torque -

Topic: Force
Days: 14
Subject(s): Science

Key Learning: Newton's Three Laws of Motion can be used to understand and explain the motion of any object.

Unit Essential Question(s):

How can we understand motion with Newton's Laws?

Concept:	Concept:	Concept:
Newton's Second Law of Motion	Newton's First Law of Motion	Using Newton's Laws S11.C.3.1.2, S11.C.3.1.3
S11.C.3.1.2, S11.C.3.1.3	S11.C.3.1.2, S11.C.3.1.3	
Students can apply the law to various bodies and determine the forces involved by resolving acceleration vectors.	Calculate the Forces due to gravity and the resolving of the 'g' into normal and other forces.	
5		\checkmark
Lesson Essential Question(s): What does Newton's Second Law of Motion tell us about how things move? (A)	Lesson Essential Question(s): What does Newton's First Law of Motion tell us about how things move? (A)	Lesson Essential Question(s): How can we solve problems using Newton's Laws of Motion? (A)
5		\square
Vocabulary: Contact Force, Long-Range Force, Force of Gravity, Agent, Free-Body Diagram, Net Force, Newton's Second Force	Vocabulary: Newton's First Law, Inertia, Equilibrium	Vocabulary: Apparent Weight, Weightlessness

Concept: Friction S11.C.3.1.2, S11.C.3.1.3	Concept: Simple Harmonic Motion S11.C.3.1.2, S11.C.3.1.3	Concept: Newton's Third Law S11.C.3.1.2, S11.C.3.1.3
\square	\longleftarrow	5
Lesson Essential Question(s): What factors influence friction? (A)	Lesson Essential Question(s): What factors influence simple harmonic motion? (A)	Lesson Essential Question(s): What does Newton's Third Law of Motion tell us about how things move? (A)
\checkmark	5	\square
Vocabulary: Static Friction Force, Kinetic Friction Force, Terminal Velocity	Vocabulary: Simple Harmonic Motion, Period, Amplitude, Mechanical Resonance	Vocabulary: Interaction Pair, Newton's Third Law

Topic: Force

Days: 14
Subject(s): Science

Additional Information:

Attached Document(s):

Concept:

Newton's Second Law of Motion
Contact Force -
Long-Range Force -
Force of Gravity -
Agent -
Free-Body Diagram -
Net Force -
Newton's Second Force -

Concept:

Newton's First Law of Motion
Newton's First Law -
Inertia -
Equilibrium -

Concept: Using Newton's Laws

Apparent Weight -
Weightlessness -

Concept: Friction

Static Friction Force -
Kinetic Friction Force -
Terminal Velocity -

Concept: Simple Harmonic Motion

Simple Harmonic Motion -
Period -
Amplitude -
Mechanical Resonance -

Concept: Newton's Third Law

Interaction Pair -
Newton's Third Law -

Concept: Ropes and Springs

Tension -

Topic: Math for Physics

Days: 12
Subject(s): Science

Key Learning:
A basic understanding of mathematics is useful not only in the laboratory but also at the shopping mall, on the highway, in the kitchen, and on the playing field.

Topic: Math for Physics

Days: 12
Subject(s): Science

Concept: Properties of Vectors	Concept: Components of Vectors
Lesson Essential Question(s): What is a vector and why should I care? (A) Vocabulary: Graphical Representation, Algebraic Representation, Resultant Vector (A) can I use math to calculate where I am?	

Additional Information:

Attached Document(s):

Concept:

Algebra Review- Exponents, Scientific, Metric System, SI Notation, Notation, Polynomial Equations
Exponents -
Scientific notation -
Decimal Notation -
Metric System
SI -
Base Units -
Meter -
Second-
Kilogram -
Derived Units -

Concept:

Mathematical Uncertainties
Precision -
Accuracy -
Parallax -
Significant Digits -

Concept:

Graphing Data
Linear Relationship -
Slope -
y-intercept -
Quadratic Relationship -
Inverse Relationship -

Concept: Properties of Vectors

Graphical Representation -
Algebraic Representation -
Resultant Vector -

Concept: Components of Vectors

Vector Resolution -
Components -

Topic: Momentum

Days: 8
Subject(s): Science

Key Learning: Momentum is conserved in all situations and applications.

Additional Information:
See attachments Phywk(27-29)
Attached Document(s):

Concept:

Impulse - Momentum Theorem
Momentum -
Impulse -
Impulse-Momentum Theorem -
Angular Momentum -

Concept:

Momentum Conservation
Closed System -
Internal Forces -
External Forces -
Isolated System -
Law of Conservation of Momentum -

Concept:

Momentum in Two Dimensional Collisions
Net Momentum -

Topic: Motion
Days: 18
Subject(s): Science

Key Learning:
 The motion of an object can be described both graphically and mathematically.

Concept: Graphing Motion and Velocity S11.C.3.1.3, S11.C.3.1.2	Concept: Solving Motion Problems S11.C.3.1.3, S11.C.3.1.2	Concept: Free Fall Motion S11.C.3.1.3, S11.C.3.1.2
5	5	5
Lesson Essential Question(s): How do I represent velocity and motion on a graph? (A)	Lesson Essential Question(s): How do I mathematically solve problems involving velocity and acceleration? (A)	Lesson Essential Question(s): How is the motion of an object different when it is in free fall? (A)
\checkmark	\checkmark	\checkmark
Vocabulary: Uniform Motion	Vocabulary: Constant Acceleration, Instantaneous Acceleration	Vocabulary: Acceleration Due to Gravity

\square

Concept: Motion Graphically

Motion Diagram -
Operational Diagram -
Particle Model -
Coordinate System -
Origin -
Position Vector -
Scalar Quantity -
Vector Quantity -
Displacement -
Time Interval -
Distance -

Concept:

Velocity
Average Velocity -
Average Speed -
Instantaneous Velocity -

Concept:

Acceleration
Average Acceleration -

Concept: Graphing Motion and Velocity

Uniform Motion -

Concept: Solving Motion Problems

Constant Acceleration -
Instantaneous Acceleration -

Concept: Free Fall Motion

Acceleration Due to Gravity -

Topic: Waves: Light \& Sound
Days: 15
Subject(s): Science
Key Learning:
$\begin{aligned} & \text { Waves behave predictably based on the characteristics of the wave and the medium through } \\ & \text { which it travels. }\end{aligned}$

Topic: Waves: Light \& Sound
Subject(s): Science

Concept:	Concept:	Concept:
Mirrors	Lenses	Gratings
S11.C.2.1.1	S11.C.2.1.1	S11.C.2.1.1
		Light diffracts when it passes through narrow slitssplitting the light into distint patterns of positive and negative interference.
\square		5
Lesson Essential Question(s): How does light behave at boundaries? (A) How does the reflected beam compare with the initial light wave? (A)	Lesson Essential Question(s): What are the properties of images formed by concave and convex lense? (A) How do images form when light is passed through lenses? (A)	Lesson Essential Question(s): How is a grating different than a prism? (A)
\square		5
Vocabulary: Normal, Image, Convex / Concave, Magnification, Virtual, medium, reflection, refraction, diffraction, polarization	Vocabulary: Magnification, convex, concave, real/virtual image, focus, focal point, radius of curvature, Total Internal Reflection / Critical Angle	Vocabulary: Diffraction, Young's interference Experiment (Interferometer)

Additional Information:

Attached Document(s):

Concept: Wave Mechanics

wavelength -
frequency -
period -
amplitude -
trough -
peak-
constructive/destructive interference -
node -
antinode -
standing wave -
resonance-
superposition -
boundary -
medium -
reflection -
refraction -

Concept: Sound

Decibel (dB) -
pitch -
echo -
doppler -
harmonics -
open/closed pipe resonator -
octave-

Concept: Nature of Light

wavelength -
frequency -
amplitude -
Transverse / longitudinal -
Hertz / Frequency -
Boundary -
primary and secondary colors -

Concept:

Mirrors
Normal -
Image -
Convex / Concave -
Magnification -
Virtual -
medium -
reflection -
refraction -
diffraction -
polarization -

Concept:

Lenses

Magnification -
convex -
concave -
real/virtual image -
focus -
focal point -
radius of curvature -
Total Internal Reflection / Critical Angle -

Concept:

Gratings
Diffraction -
Young's interference Experiment (Interferometer) -

