Topic: Operations with Complex Numbers

Key Learning(s): The students wi Represent and/or use imag (square roots and exponer	ill ginary numbers in equilalent form its)	Optional Instructional Tools:
Unit Essential Question(s): How do you represent and equivalent form (square roots and es	l/or use imaginary numbers in xponents)?	
Concept: A2.1.1.1 Simplify/write square roots in terms of i	Concept: A2.1.1.1.2 Simplify/evaluate expressions involving powers of i	Concept:
Lesson Essential Questions: How do you write square roots in terms of i?	Lesson Essential Questions: How do you evaluate expressions involving powers of i?	Lesson Essential Questions:
Vocabulary: Imaginary unit, square root property	Vocabulary: expressions, i, evaluate	Vocabulary:

Concept:	Concept:	Concept:
Lesson Essential Questions:	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

Attached Document(s):

Topic: Operations with Complex Numbers

Key Learning(s): The students w Apply the order of operation problem-solving situation	ill ions in computation and in s.	Optional Instructional Tools:
		$\langle \rangle$
Unit Essential Question(s): How do you apply the ord in problem-solving situati	ler of operations in computation and ons?	
Concept: A2.1.1.2.1 Add and subtract complex numbers	Concept: A2.1.1.2.2 Multiply and divide complex numbers	Concept:
Lesson Essential Questions: How do you add and subtract complex numbers?	Lesson Essential Questions: How do you multiply and divide complex numbers?	Lesson Essential Questions:
Vocabulary: Complex number	Vocabulary: Complex conjugates	Vocabulary:

Concept:	Concept:	Concept:
Lesson Essential Questions:	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

Attached Document(s):

Topic: Non-Linear Expressions

Key Learning(s): The students wi Use exponents, roots, and equivalent forms or to sol	ill /or absolute values to represent ve problems	Optional Instructional Tools:
Unit Essential Question(s): How do you use exponent represent equivalent form	s, roots, and/or absolute values to solve problems?	
Concept: A2.1.2.1.1 Use exponential expressions to represent rational numbers.	Concept: A2.1.2.1.2 Simplify/evaluate expressions involving positive and negative exponents and/or roots (may contain all types of real numbers—exponents should not exceed power of 10).	Concept: A2.1.2.1.3 Simplify/evaluate expressions involving multiplying with exponents (e.g., $x6 \cdot x7 = x13$), powers of powers (e.g., $(x6)7 = x42$) and powers of products (e.g., $(2x2)3 = 8x6$). Note: Limit to rational exponents.
Lesson Essential Questions: How do you use exponential expressions to represent rational numbers?	Lesson Essential Questions: How do you simplify/evaluate expressions involving positive and negative exponents and/or roots?	Lesson Essential Questions: How do you simplify/evaluate expressions involving multiplying with exponents (e.g., $x6 \cdot x7 = x13$), powers of powers (e.g., $(x6)7 = x42$) and powers of products (e.g., $(2x2)3 = 8x6$)?
Vocabulary: Simplify, scientific notation	Vocabulary:simplify, evaluate, roots	Vocabulary: simplify, evaluate

Concept: A2.1.2.1.4 Simplify or evaluate expressions involving logarithms and exponents (e.g., log28 = 3 or log42 = 1 } 2).	Concept:	Concept:
Lesson Essential Questions: How do you simplify or evaluate expressions involving logarithms and exponents (e.g., log28 = 3 or log42 = 1 } 2)?	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary: Logarithm, logarithmic function, logarithmic equation	Vocabulary:	Vocabulary:

Attached Document(s):

Additional Info:

Topic: Non-Linear Expressions

Course:

Key Learning(s): The students w Simplify expressions invo	ill lving polynomials.	Optional Instructional Tools:
Unit Essential Question(s): How do you sin polynomials?	nplify expressions involving	
Concept: A2.1.2.2.1 Factor algebraic expressions, including difference of squares and trinomials. Note: Trinomials limited to the form ax2+bx+c where <i>a</i> is not equal to 0.	Concept: A2.1.2.2.2 Simplify rational algebraic expressions.	Concept:
Lesson Essential Questions: How do you factor algebraic expressions, including difference of squares and trinomials?	Lesson Essential Questions: How do you simplify rational algebraic expressions?	Lesson Essential Questions:
Vocabulary: Quadratic form, trinomial, intercept form	Vocabulary: Rational expressions	Vocabulary:

Concept:	Concept:	Concept:
Lesson Essential Questions:	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

Attached Document(s):

Topic: Non-Linear Equations

Course:

Key Learning(s): The students will Write and/or solve nonlinear equations using various methods.	11	Optional Instructional Tools:
Unit Essential Question(s): How do you write and/or solve nonl equations using various methods.	inear	
Concept: A2.1.3.1.1 Write and/or solve quadratic equations (including factoring and using the Quadratic Formula).	Concept: A2.1.3.1.2 Solve equations involving rational and/or radical expressions (e.g., $10/(x + 3) + 12/(x - 2) = 1$ or \ddot{I} } x 2 + 21x = 14).	Concept: A2.1.3.1.3 Write and/or solve a simple exponential or logarithmic equation (including common and natural logarithms).
Lesson Essential Questions: How do you write and/or solve quadratic equations (including factoring and using the Quadratic Formula).	Lesson Essential Questions: How do you solve equations involving rational and/or radical expressions?	Lesson Essential Questions: How do you write and/or solve a simple exponential or logarithmic equation (including common and natural logarithms)?
Vocabulary: Quadratic function, linear term, constant term, root, zero	Vocabulary: Rational expression, radical expression	Vocabulary: Logarithm, natural logarithm, common base, e

Concept: A2.1.3.1.4 Write, solve, and/or apply linear or exponential growth or decay (including problem situations).	Concept:	Concept:
Lesson Essential Questions: How do you write, solve, and/or apply linear or exponential growth or decay (including problem situations).	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

Attached Document(s):

Topic: Non-Linear Equations

Course:

Key Learning(s): The students we Describe and/or determine change.	ill	Optional Instructional Tools:
Unit Essential Question(s): How do you describe and/or determine change?		
Concept: A2.1.3.2.1 Determine how a change in one variable relates to a change in a second variable (e.g., $y = 4/x$; if x doubles, what happens to y?).	Concept: A2.1.3.2.2 Use algebraic processes to solve a formula for a given variable (e.g., solve $d = rt$ for r).	Concept:
Lesson Essential Questions: How do you Determine how a change in one variable relates to a change in a second variable?	Lesson Essential Questions: How do you Use algebraic processes to solve a formula for a given variable?	Lesson Essential Questions:
Vocabulary: Variable, rate of change,	Vocabulary: algebraic	Vocabulary:

Concept:	Concept:	Concept:
Lesson Essential Questions:	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

Attached Document(s):

Topic: Patterns, Relations and Functions.

Course:

Key Learning(s): The students we Analyze and/or use patterns or relations.	ill	Optional Instructional Tools:
Unit Essential Question(s): How do you analyze and/or use patterns or relations?		
Concept: A2.2.1.1.1 Analyze a set of data for the existence of a pattern and represent the pattern with a rule algebraically and/or graphically.	Concept: A2.2.1.1.2 Identify and/or extend a pattern as either an arithmetic or geometric sequence (e.g., given a geometric sequence, find the 20th term).	Concept: A2.2.1.1.3 Determine the domain, range, or inverse of a relation.
Lesson Essential Questions: How do you analyze a set of data for the existence of a pattern and represent the pattern with a rule algebraically and/or graphically?	Lesson Essential Questions: How do you identify and/or extend a pattern as either an arithmetic or geometric sequence?	Lesson Essential Questions: How do you determine the domain, range, or inverse of a relation?
Vocabulary: Ordered pair,	Vocabulary: Geometric sequence, common ratio, geometric means	Vocabulary: Domain, range, inverse, mapping

Concept: A2.2.1.1.4 Identify and/or determine the characteristics of an exponential, quadratic, or polynomial function (e.g., intervals of increase/decrease, intercepts, zeros, and asymptotes).	Concept:	Concept:
Lesson Essential Questions: How do you identify and/or determine the characteristics of an exponential, quadratic, or polynomial function	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary: Intercepts, zeros, asymptotes	Vocabulary:	Vocabulary:

Topic: Applications of Functions.

Course:

Key Learning(s): The students w create, interpret, and/or use polynor logarithmic functions and their equal Unit Essential Question(s): How do you create, interpret, and/o and/or logarithmic functions and the	ill mial, exponential, and/or ations, graphs, or tables. r use polynomial, exponential, eir equations, graphs, or tables?	Optional Instructional Tools:
Concept: A2.2.2.1.1 Create, interpret, and/or use the equation, graph, or table of a polynomial function (including quadratics).	Concept: A2.2.2.1.2 Create, interpret, and/or use the equation, graph, or table of an exponential or logarithmic function (including common and natural logarithms).	Concept:
Lesson Essential Questions: How do you create, interpret, and/or use the equation, graph, or table of a polynomial function?	Lesson Essential Questions: How do you create, interpret, and/or use the equation, graph, or table of an exponential or logarithmic function?	Lesson Essential Questions:
Vocabulary: Polynomial,	Vocabulary: Logarithm, exponent	Vocabulary:

Concept: A2.2.2.1.3 Determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a polynomial, exponential, or logarithmic function.	Concept: A2.2.2.1.4 Translate a polynomial, exponential, or logarithmic function from one representation of a function to another (graph, table, and equation).	Concept:
Lesson Essential Questions: How do you determine, use, and/or interpret minimum and maximum values over a specified interval of a graph of a polynomial, exponential, or logarithmic function?	Lesson Essential Questions: How do you Translate a polynomial, exponential, or logarithmic function from one representation of a function to another?	Lesson Essential Questions:
Vocabulary: Maximum, minimum,	Vocabulary:	Vocabulary:

Topic: Applications of Functions.

Key Learning(s): The students will Describe and/or determine families of functions.	Optional Instructional Tools:	
Unit Essential Question(s): How do you describe and/or determine families of functions?		

Concept: A2.2.2.2.1 Identify or describe the effect of changing parameters within a family of functions (e.g., $y = x^2$ and $y = x^2 + 3$, or $y = x^2$ and $y = 3x^2$).	Concept:	Concept:
Lesson Essential Questions: How do you Identify or describe the effect of changing parameters within a family of functions?	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary: Slope intercept, y intercept, slope	Vocabulary:	Vocabulary:

Concept:	Concept:	Concept:
Lesson Essential Questions:	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

Attached Document(s):

Topic: Data Analysis

Course:

Key Learning(s): The students will analyze and/or interpret data Optional on a scatter plot and/or use Instructional Tools: a scatter plot to make predictions. **Unit Essential Question(s):** How do you analyze and/or interpret data on a scatter plot and/or use a scatter plot to make predictions. Concept: A2.2.3.1.1 **Concept:** A2.2.3.1.2 **Concept:** Draw, identify find, interpret, and/or Make predictions using the equations write an equation or graphs of for a regression model (lines and regression models (lines and curves curves of best fit) for of best fit) of a scatter plot. scatter plots. Lesson Essential Questions: Lesson Essential Questions: Lesson Essential Questions: How do you draw, identify find, How do you make predictions using the equations or graphs of interpret, and/or write an equation for a regression model (lines and regression models (lines and curves curves of best fit) for of best fit) of scatter plots? a scatter plot? Vocabulary: Vocabulary: Vocabulary:

Concept:	Concept:	Concept:
Lesson Essential Questions:	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

substitution

Attached Document(s):

Scatter plot, line of fit

Topic: Data Analysis

Course:

Key Learning(s): The students will A2.2.3.2 Optional Apply probability to practical **Instructional Tools:** situations. Unit Essential Question(s): How do you apply probability to practical Situations? Concept: A2.2.3.2.1 **Concept:** A2.2.3.2.2 **Concept:** A2.2.3.2.3 Use combinations, permutations, and Use odds to find probability and/or Use probability for independent, the fundamental counting principle to use probability to dependent, or compound events to solve problems involving probability. find odds. predict outcomes. Lesson Essential Questions: Lesson Essential Questions: Lesson Essential Questions: How do you use combinations, How do you use odds to find How do you use probability for permutations, and the fundamental probability and/or use probability to independent, dependent, or counting principle to solve problems find odds? compound events to predict involving probability? outcomes? Vocabulary: Vocabulary: Vocabulary: Combination, permutation, Mean, median, mode, range fundamental counting principal

Concept:	Concept:	Concept:
Lesson Essential Questions:	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary:	Vocabulary:	Vocabulary:

Attached Document(s):	