
Folder: Science

Group/District: PENNSYLVANIA

🗆 Essential (E)	🗆 Important (I)	Compact (C)	🗆 Unranked (U)

Topic: Atomic Theory and Structure **Days: 20** Subject(s): Science Grade(s): 10th, 11th Key Learning: The subatomic particles of an element determine its properties. Note: Referenced Lesson Plans can be found in the attachments under the Learning Map in the Matter Unit Unit Essential Question(s): How is the study of atomic structure the basis for the study of Chemistry? Concept: Concept: Concept Atomic Structure History of Atomic Theory/Atomic Modern Atomic Theory S11.C.1.1.1 S11.A.3.2.1, S11.C.1.1.1 Structure S11.A.3.2.1, S11.C.1.1.1 Lesson Essential Question(s): What are the parts of the atom and their Lesson Essential Question(s): How has our understanding of the atom changed Lesson Essential Question(s): What does the modern model of the atom look locations? (A) over time? (A) like? (A) Vocabulary: atom, proton, neutron, electron, nucleus Vocabulary: Vocabulary: Bohr, Isotopes Democritus, Dalton, Rutherford, Thomson

Concept: Interpreting the Periodic Table S11.C.1.1.4, S11.C.1.1.1	Concept: Electromagnetic Waves and Electrons S11.C.1.1.4, S11.C.2.1.1 Show energy output that results from electrons reacting to incoming light waves
Lesson Essential Question(s): How does the periodic table show the structure of an atom? (A)	Lesson Essential Question(s): What happens when electrons get excited? (A)
Vocabulary: atomic number, atomic mass unit, mass number, isotope, atomic mass, Lewis Dot Structures	Vocabulary: Electromagnetic Radiation, Radio-Microwave- Infrared-Visible-UV-Xray-Gamma, , Ground State, Excited State

Subject(s): Science

Days: 20 Grade(s): 10th, 11th

Additional Information:

Attached Document(s):

Vocab Report for Topic: Atomic Theory and Structure Subject(s): Science

Concept: History of Atomic Theory/Atomic Structure

Democritus -Dalton -Rutherford -Thomson -

Concept: Modern Atomic Theory

Bohr -Isotopes -

Concept: Interpreting the Periodic Table

atomic number atomic mass unit mass number isotope atomic mass -Lewis Dot Structures -

Concept:

Electromagnetic Waves and Electrons

Electromagnetic Radiation -Radio-Microwave-Infrared-Visible-UV-Xray-Gamma -

Lin / Absorption Spectra

Ground State -Excited State -

Concept: Atomic Structure

atom proton neutron electron nucleus - Days: 20 Grade(s): 10th, 11th

Topic: Chemical Reactions and Equations **Days:** 16 Subject(s): Science Grade(s): 11th Key Learning: Chemical reactions are predictable. Unit Essential Question(s): What are the factors and principles we can use to predict the outcome of reactions? Concept: Concept: Concept: How to Identify Chemical Writing Chemical Reactions **Balancing Chemical Reactions** S11.C.1.1.3, S11.C.2.1.2 S11.C.1.1.3 Reactions S11.C.1.1.3 Lesson Essential Question(s): What observations can be made that point to a Lesson Essential Question(s): How can I put a chemical equation into words? Lesson Essential Question(s): How do I balance a chemcial reaction to prove chemical reaction? (A) the conservation of matter? (A) (A) Vocabulary: Chemical Reaction, Chemical Change, Physical Vocabulary: Reactant, Product Vocabulary: Coefficient Change

Concept: Classifying Chemical Reactions	Concept: Equilibrium	Concept: Reaction Rates		
<u>\$11.C.1.1.3</u>	<u>\$11.C.2.1.3</u> , <u>\$11.C.1.1.6</u>	<u>S11.C2.1.2</u> , <u>S11.C2.1.3</u> , <u>S11.C.1.1.6</u>		
Lesson Essential Question(s): How do I place chemical reactions into the five categories? (A)	Lesson Essential Question(s): What factors result in a change in equilibrium? (A)	Lesson Essential Question(s): What factors can influence the rate of a reaction? (A)		
Vocabulary: Synthesis, Decomposition, Single- Displacement, Double-Displacement, Composition	Vocabulary: Equilibrium, Dynamic Equilibrium, Soluble, Insoluble	Vocabulary: Activation Energy, Concentration, Limiting Reactant, Catalyst, Enzyme, Inhibitor		

Additional Information:
Attached Document(s):

Vocab Report for Topic: Chemical Reactions and Equations Subject(s): Science

Concept: How to Identify Chemical Reactions

Chemical Reaction -Chemical Change -Physical Change -

Concept: Writing Chemical Reactions

Reactant -Product -

Concept: Balancing Chemical Reactions

Coefficient -

Concept: Classifying Chemical Reactions

Synthesis -Decomposition -Single-Displacement -Double-Displacement -Composition -

Concept: Equilibrium

Equilibrium -Dynamic Equilibrium -Soluble -Insoluble -

Concept: Reaction Rates

Activation Energy -Concentration -Limiting Reactant -Catalyst -Enzyme -Inhibitor - Days: 16 Grade(s): 11th **Topic:** Covalent Compounds Days: 15 Subject(s): Grade(s): Key Learning: Covalent compounds have a unique system of nomenclature and common properties. Unit Essential Question(s): What makes covalent compounds unique? Concept: Concept: Concept: Sharing of Electrons **Multiple Bonds** Writing Formulas for Covalent S11.C.1.1.1, S11.C.1.1.3, S11.C.1.1.4 S11.C.1.1.3, S11.C.1.1.1 Compounds S11.C.1.1.3, S11.C.1.1.4 Lesson Essential Question(s): How are electrons arranged when more than one Lesson Essential Question(s): How are the formulas for covalent compounds Lesson Essential Question(s): How are the electrons arranged and shared in a covalent compound? (A) pair is formed? (A) written? (A) S11.C.1.1.4 Vocabulary: Double Bond, Triple Bond Vocabulary: Molecular Substance Vocabulary: Covalent Bond, Covalent Compound, Molecule, Electrolyte, Interparticle Forces

Concept: Nomenclature of Covalent Compounds S11.C.1.1.3	Concept: Properties of Covalent Compounds <u>S11.C.1.1.3</u>	Concept: Comparing Ionic and Covalent Compounds S11.C.1.13. S11.C.1.14
Lesson Essential Question(s): How are covalent compounds named? (A) S11.C.1.1.3	Lesson Essential Question(s): What properties do covalent compounds have in common? (A)	Lesson Essential Question(s): What properties can be used to distinguish between ionic and covalent compounds? (A)
Vocabulary:	Vocabulary: Distillation, Molecular Element, Allotrope	Vocabulary:

Additional Information:	
Attached Document(s):	

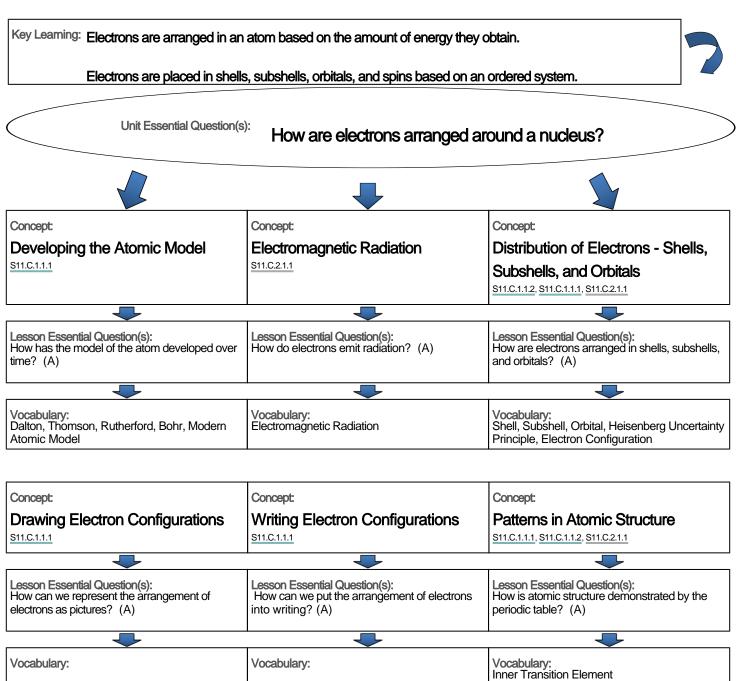
Days: 15 Grade(s):

Concept: Sharing of Electrons

Covalent Bond -Covalent Compound -Molecule -Electrolyte -Interparticle Forces -

Concept: Multiple Bonds

Double Bond -Triple Bond -


Concept: Writing Formulas for Covalent Compounds

Molecular Substance -

Concept: Properties of Covalent Compounds

Distillation -Molecular Element -Allotrope - Subject(s): Science

Days: 10 Grade(s): 11th

dditional Information:	
ttached Document(s):	

Vocab Report for Topic: Electron Configuration Subject(s): Science Days: 10 Grade(s): 11th

Concept: Developing the Atomic Model

Dalton -Thomson -Rutherford -Bohr -Modern Atomic Model -

Concept: Electromagnetic Radiation

Electromagnetic Radiation -

Concept: Distribution of Electrons - Shells, Subshells, and Orbitals

Shell -Subshell -Orbital -Heisenberg Uncertainty Principle -Electron Configuration -

Concept: Patterns in Atomic Structure

Inner Transition Element -

Topic: Gas Laws Subject(s):		Days: 15 Grade(s):		
Key Learning: The properties of gases can be predicted through a series of gas laws.				
Unit Essential Question(s): How can we calculate the properties of gases using the Gas Laws?				
Concept:	Concept:	Concept:		
Physical Behavior of Matter <u>S11.C.1.1.1, S11.C.1.12, S11.C.2.12</u>	Temperature and Thermometers	Gas Pressure <u>S11.C.1.12</u> , <u>S11.C.2.12</u>		
Lesson Essential Question(s): How do atoms move differently in solids, liquids, and gases? (A)	Lesson Essential Question(s): How does a thermometer work? (A) Why do we have different temperature scales? Which do I use? (A)	Lesson Essential Question(s): What factors affect the pressure created by a gas? (A)		
Vocabulary: Solid, Liquid, Gas, Brownian Motion, Kinetic Theory, Ideal Gas	Vocabulary: Temperature, Absolute Zero, Kelvin	Vocabulary: Barometer, Pascal, Factor Label Method		

Concept:	Concept:	Concept:	
Boyle's Law	Charles' Law	Gay-Lussac's Law	
S11.C.1.1.5	S11.C.1.1.5	S11.C.1.1.5	
Lesson Essential Question(s):	Lesson Essential Question(s):	Lesson Essential Question(s):	
How are the pressure and volume of a gas	How are the temperature and volume of a gas	How are the temperature and pressure of a gas	
related? (A)	related? (A)	related? (A)	
Vocabulary:	Vocabulary:	Vocabulary:	
Pressure, Volume	Volume, Temperature	Pressure, Temperature	

Subject(s):

Days: 15 Grade(s):

Concept: Combined Gas Law	Concept: Avogadro's Principle	Concept: Ideal Gas Law S11.C.1.1.5	
Lesson Essential Question(s):	Lesson Essential Question(s):	Lesson Essential Question(s):	
How are volume, pressure, and temperature	What unit do we use to measure the amount of a	How are volume, pressure, temperature, and the	
related? (A)	gas? (A)	amount of a gas related? (A)	
$\bullet \bullet \bullet$			
Vocabulary:	Vocabulary:	Vocabulary:	
Pressure, Volume, Temperature	Molecule, Mole	Pressure, Volume, Temperature, Mole	

Additional Information:	
Attached Document(s):	

Vocab Report for Topic: Gas Laws Subject(s): Days: 15 Grade(s):

Concept: Physical Behavior of Matter

Solid -Liquid -Gas -Brownian Motion -Kinetic Theory -Ideal Gas -

Concept: Temperature and Thermometers

Temperature -Absolute Zero -Kelvin -

Concept: Gas Pressure

Barometer -Pascal -Factor Label Method -

Concept: Boyle's Law

Pressure -Volume -

Concept: Charles' Law

Volume -Temperature -

Concept: Gay-Lussac's Law

Pressure -Temperature -

Concept: Combined Gas Law

Pressure -Volume -Temperature -

Concept: Avogadro's Principle

Vocab Report for Topic: Gas Laws Subject(s):

Molecule -Mole -

Concept: Ideal Gas Law

Pressure -Volume -Temperature -Mole - Days: 15 Grade(s): **Topic:** Ionic Compounds Days: 15 Subject(s): Grade(s): Key Learning: Ionic bonds are formed by electron transfer. Ionic bonds are named with a uniform, ordered nomenclature. Unit Essential Question(s): Why are sodium chloride and water different? Concept: Concept: Concept: Properties of Compounds: Salt, Achieving Stability - Noble Gases Writing Ionic Formulas S11.C.1.1.2, S11.C.1.1.3, S11.C.1.1.1 S11.C.1.1.3 Carbon Dioxide, Water S11.C.1.1.1 Lesson Essential Question(s): Why are compounds made of the same elements Lesson Essential Question(s): What makes a noble gas so snobby? (A) Lesson Essential Question(s): How do I determine the formula for an ionic so different? (A) compound? (A) Vocabulary: Octet Rule, Noble Gas Configuration, Ion, Ionic Vocabulary: Vocabulary: Compound, Ionic Bond

Concept:	Concept:	Concept:
Naming Ionic Compounds	Polyatomic lons and Transition	Properties of Ionic Compounds
S11.C.1.1.3	Metals	S11.C.1.1.2, S11.C.1.1.3
Lesson Essential Question(s):	Lesson Essential Question(s):	Lesson Essential Question(s):
What is the proper nomenclature for ionic	How do polyatomic ions and transition metals	What are the common properties of ionic
compounds? (A)	differ in nomenclature? (A)	compounds? (A)
Vocabulary: Binary Compound, Formula Unit, Oxidation Number	Vocabulary: Polyatomic Ion, Transition Metal	Vocabulary: Crystal Lattice, Hydrate, Hygroscopic, Deliquescent, Anhydrous

Additional Information:	
Attached Document(s):	

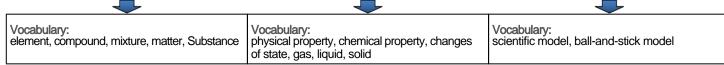
Vocab Report for Topic: Ionic Compounds Subject(s):

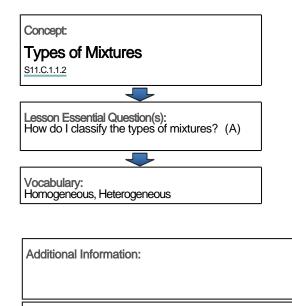
Concept: Achieving Stability - Noble Gases

Octet Rule -Noble Gas Configuration -Ion -Ionic Compound -Ionic Bond -

Concept: Naming Ionic Compounds

Binary Compound -Formula Unit -Oxidation Number -


Concept: Polyatomic Ions and Transition Metals


Polyatomic Ion -Transition Metal -

Concept: Properties of Ionic Compounds

Crystal Lattice -Hydrate -Hygroscopic -Deliquescent -Anhydrous - Days: 15 Grade(s): Topic: Matter and Its Properties

Days: 16 Subject(s): Science Grade(s): 11th Key Learning: Chemistry is the study of matter; matter can be classified as mixtures, elements or compounds with unique chemical and physical properties. Note: Referenced Lesson Plans are found in the Attachments at the bottom of this screen Unit Essential Question(s): Is a change a chemical or a physical reaction? Concept: Concept: Concept: Chemical and Physical Properties/ Classification of Matter Models in Chemistry S11.A.3.2.1 S11.C.1.1.1, S11.C.1.1.2 Changes S11.C.1.1.2 Lesson Essential Question(s): How are chemical and physical changes/ Lesson Essential Question(s): How is matter classified? (A) Lesson Essential Question(s): How can we represent chemistry concepts with properties distinguished? (A) models? (A)

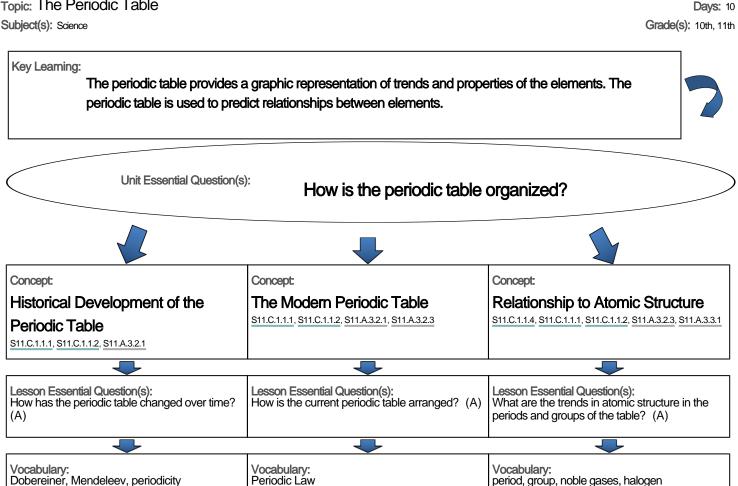
Attached Document(s):

Vocab Report for Topic: Matter and Its Properties Subject(s): Science Days: 16 Grade(s): 11th

Concept: Classification of Matter

element compound mixture matter -Substance -

Concept: Chemical and Physical Properties/Changes


physical property chemical property changes of state gas liquid solid -

Concept: Models in Chemistry

scientific model ball-and-stick model -

Concept: Types of Mixtures

Homogeneous -Heterogeneous - Topic: The Periodic Table

Concept:	
Metals, Nonmetals, Metalloids	
<u>S11.C.1.1.4</u> , <u>S11.A.3.3.1</u>	
Lesson Essential Question(s): Where are the groups of metals, nonmetals, and metalloids located on the table? (A)	
Vocabulary: metal, transition metal, lanthanide, actinide, nonmetal, metalloid, semiconductor	
Additional Information:	

Attached Document(s):

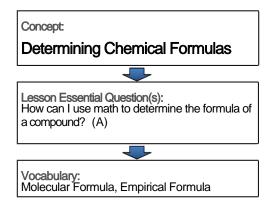
Vocab Report for Topic: The Periodic Table Subject(s): Science Days: 10 Grade(s): 10th, 11th

Concept: Historical Development of the Periodic Table

Dobereiner -Mendeleev periodicity -

Concept: The Modern Periodic Table

Periodic Law -


Concept: Relationship to Atomic Structure

period group noble gases halogen -

Concept: Metals, Nonmetals, Metalloids

metal transition metal lanthanide actinide nonmetal metalloid semiconductor -

Topic: Stoichiometry and Quantitative Chemistry Days: 15 Subject(s): Science Grade(s): 11th, 12th Key Learning: Mole relationships are used to solve problems in chemistry. Unit Essential Question(s): How are problems quantitatively solved that involve chemical reactions? Concept: Concept: Concept: Molar Mass Stoichiometry Theoretical and Actual Yields Lesson Essential Question(s): How are quantitative problems solved that Lesson Essential Question(s): Lesson Essential Question(s): How do I calculate the mass of 1 mole of a How can we predict the amount of products compound? (A) involve chemical equations? (A) formed in a chemical reaction? (A) Vocabulary: , Theoretical Yield, Actual Yield, Percent Yield Vocabulary: Vocabulary: stoichiometry, , Limiting Reagent Mole, molar mass, molar volume of a gas

 Additional Information:

 Attached Document(s):

Vocab Report for Topic: Stoichiometry and Quantitative Chemistry Subject(s): Science

Mole molar mass molar volume of a gas -

Concept: Stoichiometry

stoichiometry -

Factor Labeling (Dimensional Analysis)

Limiting Reagent -

Concept: Theoretical and Actual Yields

Theoretical Yield -Actual Yield -Percent Yield -

Concept: Determining Chemical Formulas

Molecular Formula -Empirical Formula -

Page 1 of 1

Days: 15 Grade(s): 11th, 12th