ADVANCED CALCULUS

Topic: Differential Equations		Subject(s): : Grade(s): 12
Key Learning(s): $\quad \begin{aligned} & \text { The solution } \\ & \text { differential }\end{aligned}$	of first-order, variable separable quation and applications of same.	
Unit Essential Question(s):	What are the characteristics of solutions to differential equations? What circumstances require the use of differential equations in their solution?	
Concept: slope fields	Concept: growth and decay	Concept: logistic equation
Lesson Essential Questions: What is the nature of a solution of a differential equation? How does a slope field emulate the shape of the solution curves to a particular differential equation?	Lesson Essential Questions: What is "Newton's Law of Cooling"?	Lesson Essential Questions: What is the shape of the logistics curve? What is meant by "carrying capacity"?
Vocabulary: slope field general solution particular solution initial condition	Vocabulary:	Vocabulary: logistics curve carrying capacity

ADVANCED CALCULUS

Concept:separation of variables first order linear differen- tial equations	Concept:	Concept:
Lesson Essential Questions: What is meant by "separation of variables" as a process for solving a differential equation? A "first order linear differential equation" meets what criteria?	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary: first order linear diff equn separation of variables	Vocabulary:	Vocabulary:

ADVANCED CALCULUS

Attched Document(s):

documents in development - to be attached later

Attached Info:

ADVANCED CALCULUS

ADVANCED CALCULUS

ADVANCED CALCULUS

Topic: Differentiation		Subject(s): : Grade(s):
Key Learning(s):The mastery algeb transce	y of the processes of differentiation o raic functions; differentiation of ndental functions; applications of differentiation	
Unit Essential Question(s):	What techniques are used to differentiate? What applications/real world problems require differentiation for solution?	
Concept: power rule product rule quotient rule	Concept: Rolle's Theorem Mean Value Theorem	Concept:chain rule implicit differentiation
Lesson Essential Questions: How is the power rule derived from the definition of the derivative? What are the product rule and the quotient rule? How are the product rule and the quotient rule used to find a derivative?	Lesson Essential Questions: Under what criteria may Rolle's theorem and the Mean Value theorem be applied?	Lesson Essential Questions: What is the criteria for using implicit differentiation? How are composite functions and the chain rule related?
Vocabulary: quotient factor product power denominator	Vocabulary: slope tangent line secant line	Vocabulary: composition of functions explicit implicit differentials

ADVANCED CALCULUS

Concept: exponential functions logarithmic functions natural logarithmic functions	$\|$Concept: trigonometric functions inverse trigonometric functions	Concept:logarithmic differentiation
Lesson Essential Questions: How does the relationship between exponential and logarithmic functions impact their derivatives?	Lesson Essential Questions: Why are the derivatives of trig functions not unique representations? Why are derivatives of $\tan x, \cot x$, secx, and cscx dependent on the derivatives of the $\sin x$ and $\cos x$?	Lesson Essential Questions: What conditions need to be present for the use of logarithmic differentiation to be appropriate? What is the advantage gained in using logarithmic differentiation to find a derivative?
Vocabulary: e to the x a to the x \log base e of x $\ln x$	Vocabulary: $\arcsin x$ $\arccos x$ $\arctan x$ $\sin x$ $\cos x$ $\tan x$ $\sec x$ $\csc x$ $\cot x$ $\operatorname{complete}$ the square trigonometric identities	Vocabulary: laws of exponents laws of logarithms

ADVANCED CALCULUS

Concept: Optimization	Concept: Curve Sketching	Concept: Related Rates
Lesson Essential Questions: How is differentiation employed to determine maximum or minimum values of applied functions?	Lesson Essential Questions: How is differentiation used to determine extrema of a graph? How is differentiation used to determine inflection points of a graph? How is differentiation used to determine the monotonicity of a graph? How is differentiation used to determine the concavity of a graph?	Lesson Essential Questions: What is the strategy employed to solve problems involving related rates of change?
Vocabulary: maximim point minimum point maximum function value minimum function value	Vocabulary: monotonicity concavity maximum point minimum point increasing decreasing point of inflection vertical asymptote horizontal asymptote zeros x-intercepts y-intercepts extrema	Vocabulary: rate of change

ADVANCED CALCULUS

Attched Document(s):

documents in development - to be attached later

Attached Info:

ADVANCED CALCULUS

Topic: Integration		$\begin{array}{ll} \hline \text { Subject(s): : } \\ \text { Grade(s): } & 12 \end{array}$
Key Learning(s):	ry of the processes of integration of nctions; integration of transcendental ons; applications of integration	
Unit Essential Question(s):	What techniques are used to integrate? What applications/real world problems require integration for solution?	
Concept:indefinite integration basic integration	Concept: definite integration the Fundamental Theorem of Calculus trig integrals area under a curve	$\|$Concept: integration techniques substitution by parts trig substitution partial fractions
Lesson Essential Questions: How can you verify that integration and differentiation are inverse processes?	Lesson Essential Questions: What does an integral represent? How can the "area under a curve" be represented using integration?	Lesson Essential Questions: What criteria indicates that each of the following techinques of integration must be employed? basic substitution integration by parts trig substitution partial fractions
Vocabulary: antidifferentiation rationalize the denominator rationalize the numerator complete the square separating a numerator long division	Vocabulary: trigonometric identities	Vocabulary: conjugate complete the square rationalize separate the numerator long division

ADVANCED CALCULUS

Concept: applications: area between volume - disk volume - shell arc length surface area work center of mass centroid fluid pressure fluid force	Concept:	Concept:
Lesson Essential Questions: How are the processes of finding volume by disk or shell alike and different? What is the process used to determine the area between two curves? What are the components of work as determined by Calculus? Once determined, what is the significance of a centroid or center of mass? Why is Calculus needed to determine the fluid force (pressure) on a vertical plate? What is the relationship between arc length and surface area?	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary: height thickness outer radius inner radius slice axis of revolution force displacement	Vocabulary:	Vocabulary:

ADVANCED CALCULUS

Attched Document(s):

documents in development - to be attached later

Attached Info:

ADVANCED CALCULUS

ADVANCED CALCULUS

ADVANCED CALCULUS

ADVANCED CALCULUS

Topic: Parametric, Vector, and Polar Equations

Subject(s): : Grade(s): 12
Days:(15)

Key Learning(s): The use of Calculus with parametric equations and their graphs, with polar equations and their graphs, and with vectors		
Unit Essential Question(s):	Hows does differentiation apply to parametric and polar equations? What relationship exists between derivatives of position vectors and their velocity vectors?	
Concept: parametric equations	Concept: polar equations area in polar coord.	Concept: vectors differentiation of vector-valued func integration of vector-valued func
Lesson Essential Questions: How is the derivative of a parametric equation determined? How are parametric graphs obtained on a graphing calculator?	Lesson Essential Questions: How are polar graphs obtained on a graphing calculator? How is the area enclosed by multiple polar equations found? How is the length of an arc of a polar curve determined?	Lesson Essential Questions: How are the derivative and integral of a vector determined?
Vocabulary: graphs cycloid derivatives of parametric cycloid tangent line to parametric arc length of parametric	Vocabulary: polar coordinates	Vocabulary: vector components vector magnitude position vector vector direction initial conditions

ADVANCED CALCULUS

Concept:velocity acceleration	Concept:	Concept:
Lesson Essential Questions: What are the derivative of a position vector and the derivative of a velocity vector called?	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary: velocity vector acceleration vector	Vocabulary:	Vocabulary:

ADVANCED CALCULUS

Attched Document(s):

documents in development - to be attached later

Attached Info:

ADVANCED CALCULUS

ADVANCED CALCULUS

ADVANCED CALCULUS

Topic: \quad Sequences and Series	Subject(s): : Grade(s):
Days:(26)	Recognition of infinite series and their convergence tests; representation of transcendental functions by polynomial approximations
Key Learning(s):	How are infinite series related to transcendental functions? What is the significance a convergent series?
Unit Essential Question(s):	

Concept: sequences		Concept:integral test ratio test
Lesson Essential Questions: How is the limit of a sequence determined?	Lesson Essential Questions: What process is used to detemine whether a series converges? What is the relationship between a sequence and a series?	Lesson Essential Questions: How is the appropriate test for convergence determined?
Vocabulary: term position	Vocabulary: converge diverge sequence of partial sums geometric series harmonic series alternating harmonic series p-series power series Tatlor series Maclaurin series	Vocabulary:

ADVANCED CALCULUS

Concept: Taylor polynomials	Concept:	Concept:
Lesson Essential Questions: What is the procedure for determining the Taylor/Maclaurin polynomial for a function?	Lesson Essential Questions:	Lesson Essential Questions:
Vocabulary: Taylor polynomial	Vocabulary:	Vocabulary:

ADVANCED CALCULUS

Attched Document(s):

documents in development - to be attached later

Attached Info:

ADVANCED CALCULUS

ADVANCED CALCULUS

ADVANCED CALCULUS

